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Abstract—The selection of swarm leaders (i.e., the personal
best and global best), is important in the design of a multiob-
jective particle swarm optimization (MOPSO) algorithm. Such
leaders are expected to effectively guide the swarm to approach
the true Pareto optimal front. In this paper, we present a novel
external archive-guided MOPSO algorithm (AgMOPSO), where
the leaders for velocity update are all selected from the external
archive. In our algorithm, multiobjective optimization prob-
lems (MOPs) are transformed into a set of subproblems using
a decomposition approach, and then each particle is assigned
accordingly to optimize each subproblem. A novel archive-guided
velocity update method is designed to guide the swarm for
exploration, and the external archive is also evolved using an
immune-based evolutionary strategy. These proposed approaches
speed up the convergence of AgMOPSO. The experimental results
fully demonstrate the superiority of our proposed AgMOPSO
in solving most of the test problems adopted, in terms of two
commonly used performance measures. Moreover, the effective-
ness of our proposed archive-guided velocity update method
and immune-based evolutionary strategy is also experimentally
validated on more than 30 test MOPs.

Index Terms—Evolutionary algorithm (EAs), multiobjec-
tive optimization problems (MOPs), particle swarm optimiza-
tion (PSO).

I. INTRODUCTION

IN many real-world engineering applications, we normally
face problems in which we aim to simultaneously optimize

multiple (possibly conflicting) objectives [1]. They are termed
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multiobjective optimization problems (MOPs). Due to the nat-
ural conflicts arising among the objectives, the improvement
of one objective may deteriorate the others. As a consequence,
a set of tradeoff solutions is generated (i.e., solutions in which
it is not possible to improve one objective without worsening
another). This is called the Pareto optimal set (POS) and their
corresponding mapping in objective space is termed Pareto
optimal front (POF). In order to provide solutions that are of
practical use, it is desirable to obtain a set of uniformly dis-
tributed solutions that are as close as possible to the true POF.

Multiobjective evolutionary algorithms (MOEAs) have been
substantially studied to tackle MOPs in recent years. They
have been found to provide a very promising performance in
solving different types of MOPs [2]–[12]. Based on the selec-
tion mechanisms they adopt, most of the existing MOEAs can
be classified into the following three classes. The first class
consists of Pareto-based MOEAs, which incorporate the Pareto
optimality concept into their selection process. Two represen-
tative MOEAs are NSGA-II [2] and SPEA2 [3]. The second
class consists of indicator-based MOEAs, which use a per-
formance indicator (e.g., hypervolume [4]) as their density
estimator to guide the search. Two MOEAs that are repre-
sentative of this category are IBEA [5] and SMS-EMOA [6].
The last class consists of decomposition-based MOEAs, which
transform an MOP into a set of subproblems and then optimize
them in a collaborative manner. Approaches in this category
include MOEA/D [7] and MOEA/D-IR [8]. More recently,
some hybridized algorithms based on both Pareto domi-
nance and decomposition approach have also been proposed,
such as MMOPSO [9], ND/DPP [10], MOEA/DD [11], and
BCE [12]. A survey of decomposition-based MOEAs recently
published can be found in [13].

Particle swarm optimization (PSO) has also been stud-
ied to tackle MOPs in recent years. Almost all types of
PSO approaches are designed by mimicking the social coop-
erative and competitive behavior of bird flocking and fish
schooling [14]. In its origins, PSO was mostly applied to solve
single-objective optimization problems (SOPs), due to its fast
convergence speed and easy implementation [15], [16]. The
promising results of PSO in solving SOPs validated its effec-
tiveness and efficiency of locating the optima, especially in
a large and complex problem landscape. This also motivated
researchers to extend PSO for tackling MOPs. However, when
designing a multiobjective PSO (MOPSO) algorithm, there are
two particular issues to be addressed.
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The first issue is the selection of the global best (gbest)
and the personal best (pbest) in an MOPSO algorithm. This is
mainly due to the fact that, no a single best solution but rather
a set of Pareto optimal solutions exist in tackling MOPs. In
single-objective PSO (SOPSO), the swarm leaders (i.e., gbest
and pbest) can be easily marked, since gbest and pbest are
the best values, respectively visited by the entire swarm and
each particle so far. However, in an MOPSO algorithm, mul-
tiple candidates (i.e., all the nondominated solutions) can be
nominated as gbest and pbest. As the search direction of each
particle is simultaneously guided by gbest and pbest, the selec-
tion of them has a significant impact on the performance of an
MOPSO algorithm. The second one is the rapid loss of diver-
sity due to its fast convergence speed, as pointed out in [17].
Such behavior may lead to premature convergence or get stuck
in local optima, not only in SOPSO, but even more seriously
in an MOPSO algorithm. In order to address this issue, some
existing MOPSOs have adopted a perturbation operator on
each particle [9], [18], as well as the adaptive control of the
acceleration coefficients in the velocity update formula [19],
and different selection mechanisms for pbest and gbest, with
the aim to better guide the swarm without experiencing a quick
loss of population diversity [20].

Based on the above issues, one key problem in an
MOPSO algorithm is to choose the swarm leaders, i.e.,
gbest and pbest, in order to provide a correct search direc-
tion for all the particles. This helps to speed up the con-
vergence, and also to maintain the population diversity if
properly selected. Inspired from the direction-guided search
approaches in [21]–[24], useful direction information can
be extracted from the external archive to better guide the
search of a particle swarm optimizer. We believe that such
approaches may be very suitable to select the swarm lead-
ers in MOPSOs. Therefore, in this paper, we propose an
external archive guided MOPSO algorithm (AgMOPSO) that
uses the information of external archive to guide the particle
swarm to search. In our approach, all the swarm lead-
ers (i.e., pbest and gbest) are appropriately selected from
the external archive. To maintain diversity, a decomposi-
tion approach [7] is used in AgMOPSO to transform an
MOP into a set of SOPs and then each SOP is accord-
ingly optimized by using one particle. Each particle will
be guided by three swarm leaders, i.e., pbest, local best
(lbest), and gbest, taken from the external archive. To pro-
mote the convergence speed, the individuals in the external
archive are first evolved by an immune-based evolutionary
strategy, which is helpful to guide the particles using a PSO-
based search. Comparing to the existing MOPSO algorithms,
the novel aspects of our proposed AgMOPSO are listed as
follows.

1) An archive-guided velocity update approach is designed
in AgMOPSO, which is aimed to exploit information
related to defining a search direction from the external
archive. As a decomposition approach is used to trans-
form MOPs into a set of subproblems, each particle
is guided by three leaders selected from the exter-
nal archive, in order to optimize the corresponding
subproblem.

2) An immune-based evolutionary strategy is run on the
external archive. It helps to speed up the convergence
using the clonal selection paradigm, as the swarm lead-
ers are all taken from the external archive. Therefore,
the improvement of individuals in the external archive
will be conducive to guide the PSO-based search, thus
providing a fast approximation to the true POF.

3) The selection of pbest, lbest, and gbest is redefined
in AgMOPSO. Generally, pbest, lbest, and gbest are
respectively, the best values visited by each particle,
the local swarm, and the entire swarm. However, in
AgMOPSO, as a decomposition approach is exploited
to transform MOPs into a set of subproblems, our pur-
pose is to optimize all the subproblems simultaneously.
Therefore, pbest, lbest, and gbest are regarded to be the
best values in each subproblem, the neighboring sub-
problems and all the subproblems, respectively. In this
way, AgMOPSO is devoted to optimizing each subprob-
lem by using the proposed velocity update approach.

The rest of this paper is organized as follows. Section II
introduces the related background, including the basic con-
cepts related to MOPs, decomposition approaches, multiob-
jective immune algorithms (MOIAs), some existing MOPSOs,
and direction-guided evolutionary algorithms (EAs). In
Section III, the details of AgMOPSO are given, where the
immune-based evolutionary strategy, PSO-based search and
archive update are, respectively, described in detail. Our exper-
imental studies are presented in Section IV, which compares
AgMOPSO to two current MOPSOs and three state-of-the-art
MOEAs. Moreover, the advantages of our proposed immune-
based evolutionary strategy and archive-guided velocity update
approach are also validated in Section IV. Section V presents
an extension of AgMOPSO to handle constraints and to solve
a real word engineering problem. Finally, our conclusions and
future work are provided in Section VI.

II. RELATED BACKGROUND

In this section, the related background of our work is intro-
duced. First, a brief introduction to MOPs and decomposition
approaches is provided. Since our external archive is further
evolved by an immune-based evolutionary strategy, some rele-
vant MOIAs are introduced with their advantages to speed up
the convergence. Finally, some representative MOPSOs and
direction-guided EAs are also briefly reviewed to illustrate the
novelties of our proposed approach.

A. MOPs

Generally, an MOP can be formulated as follows:

minimize : F(x) = (f1(x), f2(x), . . . , fm(x))T

subject to gj(x) ≥ 0, j = 1, . . . , J

hk(x) = 0, k = 1, . . . , K (1)

where J and K are the numbers of inequality and equality con-
straints, respectively. x = (x1, x2, . . . , xn) is an n-dimensional
decision vector bounded in decision space �. The mapping
function F : � → Rm defines m objective functions and Rm
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is called the objective space. Due to the conflicts among the
objectives, no single solution can optimize all the objectives
simultaneously. The best tradeoff solutions can be found using
the definitions of Pareto dominance. A solution x is said to
dominate another solution y (denoted as x � y) if and only if
∀i ∈ {1, 2, . . . , m}, fi(x) ≤ fi(y) and at least ∃j ∈ {1, 2, . . . , m},
fj(x) < fj(y). A solution x is said to be Pareto optimal if and
only if ¬∃y ∈ � : y � x.

B. Decomposition Approach

Decomposition approaches adopted in MOEAs include
the weighted sum, Tchebycheff and boundary intersection
approaches. As discussed in [7], the boundary intersection
method has shown certain advantages over the other two
approaches, so it is used in our algorithm for decomposing
MOPs. This approach uses the predefined weighted vectors
λ and a penalty value θ to minimize the distance d1 to the
utopian vector and the direction error to the weighted vector
d2 from the solution in objective space, as defined by

minimize : g
(
x|λ, z∗) = d1 + θd2 (2)

where z∗ is the vector including the minimum value of each
objective, and d1, d2 are calculated as follows:

d1 =
∥∥(F(x) − z∗)Tλ

∥∥

‖λ‖ and d2 =
∥
∥∥∥(F(x) − z∗) − d1

λ

‖λ‖
∥
∥∥∥.

C. Relevant MOIAs

The fact that the external archive in our algorithm is evolved
using the clonal selection mechanism helps to speed up its
convergence [25], [26]. Thus, some representative MOIAs that
incorporate clonal selection are briefly reviewed.

In [27], a multiobjective immune system algorithm was
proposed based on the clonal selection principle to produce
the clones of the individuals with high affinities. In [28],
an immune dominance clonal multiobjective algorithm was
reported, by using the concept of the antibody–antibody affin-
ity to reflect the similarity among individuals. It was also
applied to solve dynamic MOPs in [29] and was further
improved by using a novel nondominated neighbor-based
selection mechanism in [30]. In [31], a novel evolutionary
MOIA was presented with a novel clonal selection scheme
based on the diversity of the evolving population.

Recently, several MOIAs have been reported with a faster
convergence and better mechanisms to maintain diversity.
For example, a hybrid immune multiobjective optimiza-
tion algorithm [32] was designed to combine Gaussian and
polynomial-based mutations (PMs). It was further enhanced
by an adaptive mutation operator [33] and a novel adaptive
differential evolution (DE) operator [34] with a fine-grained
selection mechanism. A novel immune clonal algorithm [26]
was put forward to solve complex MOPs, using a full cloning
scheme and a novel antibody population updating operation.
A novel MOIA called IMADE was designed in [35], present-
ing a novel DE-based recombination as the search paradigm
used after clonal selection. In [25], a hybrid evolutionary
framework for MOIAs was reported to evolve subpopulations
using multiple evolutionary strategies.

Some experimental results with the above MOIAs have val-
idated that the clonal selection mechanism used for evolution
helps to speed up the convergence, particularly in some simple
MOPs without variable dependence. These results motivated
us to use an immune-based evolutionary strategy for evolv-
ing the individuals in the external archive of our proposed
approach. These enhanced individuals in the external archive
will in turn help to effectively guide the PSO-based search.

D. Existing MOPSOs

PSO was originally designed to tackle SOPs and showed
a fast convergence speed. Most multiobjective extensions of
PSO rely on Pareto ranking and a few on decomposition
methods. Thus, most existing MOPSOs can be classified
into these two categories: 1) Pareto-based MOPSOs and
2) decomposition-based MOPSOs.

The first type of MOPSOs adopts Pareto ranking to deter-
mine pbest and gbest. The gbest particle is generally assigned
with one of the nondominated solutions found from the
entire swarm and it is used to guide the swarm to approach
the POF. MOPSO [18], OMOPSO [36], SMPSO [37],
MOCLPSO [38], 2LB-MOPSO [39], CMPSO [40], and
pccsAMOPSO [17], belong to this category. In [18], MOPSO
was designed by using the Pareto dominance relationship and
an adaptive grid to update the external archive. OMOPSO
was reported in [36] to adopt the concept of ε dominance and
crowding-distance information to identify the list of leaders.
To avoid the so-called “swarm explosion” effect in OMOPSO,
SMPSO was presented with a velocity constriction procedure
during the particles movement [37]. In [38], Pareto domi-
nance concept and external archive technique were integrated
in MOCLPSO to handle MOPs, and 2LB-MOPSO [39] was
proposed to run a fine-grained search around the vicinity of
the best found fronts. In [40], CMPSO was reported with
a novel coevolutionary technique for PSO to solve MOPs
and pccsAMOPSO [17] was designed based on a parallel cell
coordinate system.

The second kind of MOPSOs adopts a decomposition
approach to transform an MOP into a set of SOPs and
then a SOPSO can be directly applied for each SOP. Such
MOPSOs include MOPSO/D [41], SDMOPSO [42], and
dMOPSO [43]. MOPSO/D may be the first attempt to embed
a decomposition approach into an MOPSO. To tackle the
drawback of MOPSO/D, SDMOPSO was proposed to fully
exploit the salient properties of neighborhood relations in PSO.
In [43], dMOPSO was presented as an approach that fully
relies on decomposition. A set of gbest particles, which can
give the best scalar aggregated values for all subproblems,
are used to update the position of each particle. However, as
pointed out by Moubayed et al. [20], the absence of Pareto
dominance in dMOPSO may lead to a failure in covering the
entire POF in some complex MOPs.

Recently, some MOPSOs, such as D2MOPSO [20] and
MMOPSO [9], have been designed by combining Pareto domi-
nance and decomposition approach. The original version of D2

MOPSO was proposed in [44], attempting to use a hybridiza-
tion of Pareto dominance and decomposition approach for
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solving MOPs. An enhanced version of D2MOPSO was also
presented by the same authors [20]. This approach introduces
a new mechanism to select leaders and a novel archiving tech-
nique to maintain the nondominated particles based on the
crowding-distance values [2] in both objective and decision
spaces. Following the framework of D2MOPSO, MMOPSO
was introduced in [9] to use two search strategies for velocity
update, aiming to concurrently promote the convergence speed
and maintain the population diversity. Moreover, an evolution-
ary search strategy is further applied to each individual of the
external archive for speeding up the convergence.

E. Direction-Guided EAs

Steering the optimization process is an effective and effi-
cient way to design an MOEA. Among the numerous search
strategies currently available, direction-guided search, which
drives the population to explore some interesting areas, has
been found to be quite promising [24]. To tackle SOPs,
a neighbor guided selection scheme and a direction induced
mutation strategy were designed in [21] to respectively exploit
the neighborhood and direction information from the popula-
tion. In [22], the reproduction mechanism was also enhanced
through an evolutionary path. This evolutionary path can be
cumulatively learned during the evolutionary process and it is
exploited to produce a new solution among its central area.

To tackle MOPs, a direction-based MOEA (DMEA) [45]
was designed to guide a population for evolving using the
directions of improvement. Then, several new features were
further embedded into DMEA to make it more robust (named
DMEA-II [46]), and a new niching method was designed for
DMEA in [47]. In [48], an evolutionary multiobjective sim-
ulated annealing algorithm with a two-phase strategy was
designed to maintain the diversity of the search directions.
This strategy uses fixed and adaptive search directions, respec-
tively, in the first and second search phases, in order to search
the objective space more effectively. Recently, a new DE vari-
ant for MOPs was studied in [24]. This approach uses the
information across generations to model the search directions
as guidance, such that both the convergence and the diversity
during the evolution can be steered.

According to our survey, although additional archives are
used in some direction-guided MOEAs, little attention has
been paid to study the use of direction information to guide
the particle swarm in MOPSOs. Therefore, in each iteration of
AgMOPSO, the archive is first evolved by an immune-based
evolutionary strategy, and then this evolved archive can be
used to guide the particle swarm for further exploration.

III. PROPOSED ALGORITHM

In this section, the details of our proposed AgMOPSO algo-
rithm are introduced. The distinct feature of this algorithm is
the use of an external archive containing all the elitist indi-
viduals as the swarm leaders for the particles. To speed up
the convergence, this external archive is first evolved using an
immune-based evolutionary strategy. The algorithmic frame-
work of AgMOPSO is shown in Fig. 1, where P, A, and S,
respectively, denote the particle swarm, the external archive,

Fig. 1. Algorithmic framework of AgMOPSO.

and a temporary population after immune-based evolutionary
search. After initialization, three main procedures are itera-
tively run in AgMOPSO, i.e., an immune-based evolutionary
search, a PSO-based search, and an archive update. Please note
that the immune-based evolutionary search is only performed
on the external archive, and then the renewed individuals in the
external archive are used to guide the swarm for exploration.
Once the termination condition is satisfied, the individuals in
the external archive are reported as the final result.

A. Initialization

The pseudo-code for the initialization is described in
Algorithm 1, where fes denotes the count for function eval-
uation. As no prior knowledge of the search landscape is
available, an initial swarm P = {x1, . . . , xN} is randomly sam-
pled in decision space �. To decompose an MOP into a set
of SOPs using (2), a set of weight vectors W = {λ1, . . . , λN}
is uniformly sampled from a unit simplex using the approach
in [49]. Each weight vector is associated with a subproblem,
thus the number of weight vectors is equal to the popula-
tion size. After that, the Euclidean distances between any
two weight vectors are computed and the neighborhood set
Bi = {i1, . . . , iT} for each weight vector λi (i ∈ {1, . . . , N}) is
built. Moreover, in (2), the ideal objective vector used in this
paper is approximated by using the minimum value of each
objective in current swarm, i.e., z∗

i = min{fi(x)|x ∈ P}, for all
i ∈ {1, . . . , m}. At last, the external archive A is updated by
adding all the nondominated solutions in P to A.

B. Immune-Based Evolutionary Search

The immune-based evolutionary search is composed of two
steps. First, the less crowded solutions in archive A are pro-
portionally cloned to get the mating population E. As shown
in Fig. 2(a), the selected solutions in PC = {a1, a2, a3, a4, a5}
represent the sparse areas that need to be searched. Second,
the mating population undergoes recombination and mutation
to get the child population S. This proportional clonal prin-
ciple will lead to the result that the less crowded area in the
archive is assigned with more clones and of course more com-
putational resources are allocated to these areas. As shown
in Fig. 2(b), the solutions a1, a2, a3, a4, a5 with differ-
ent crowding degrees will, respectively, get 8, 3, 4, 2, and
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(a) (b)

Fig. 2. Procedure of immune-based evolutionary search. (a) Before cloning
operator. (b) After cloning operator.

8 clones of solutions. The details of the cloning operator and
the evolutionary operators are respectively, introduced below.

1) Cloning Operator: It is assumed that the population
after cloning is E with size N and the elitist population used
for cloning is PC with size NC. Please note that NC is
smaller than N, usually set as N/5 [34]. At first, NC individu-
als with the largest values of crowding degree are selected
from the external archive A, to build the elitist population
PC = {a1, . . . , aNC}. Then, cloning is activated and the cloned
population E is generated, as follows:

E =
NC⋃

i=1

{qi ⊗ ai} (3)

where operation qi ⊗ai means to duplicate ai with the number
of qi, and qi stands for the number of clones corresponding to
each individual ai(i = 1, 2, . . . , NC), calculated by

qi =
⌈

N × CD(ai)
∑NC

j=1 CD(aj)

⌉

(4)

where CD(ai) is the crowding-degree value of individual ai(i =
1, 2, . . . , NC). The estimation of the crowding degree can use
the crowding distance method in NSGA-II [2] or the niching
method in BCE [12]. As studied in [52], the crowding distance
method is more suitable to estimate the crowding status in bi-
objective problems, while the niching method may be more
effective to reflect the crowding degree for MOPs with more
than two objectives. Note that once the individuals are located
in the boundary of objective space, their crowding degrees are
set as twice of the maximal crowding degree except for the
boundary individuals.

The pseudo-code of this operator is shown in Algorithm 2,
where NC is the size of the elite population for cloning and the
function CrowdingDegreeAssignment(P) calculates the value
of crowding degree for each individual in P using (4). Another
function PC = SelectforClone(PC) will return NC individuals
with the largest values of crowding degree in PC.

2) Evolutionary Operators: As shown in [25], the cloning
operator helps to speed up the convergence, especially on some
simple MOPs without variable dependence. After cloning, this
cloned population E will undergo two evolutionary operators,
i.e., simulated binary crossover (SBX) and PM [50]. To clearly

Algorithm 1 Initialization
1: A = {}, fes = 0
2: for i = 1 to N
3: randomly generate a particle xi and evaluate the objectives of

xi
4: add xi to the population P
5: end for
6: initialize N weight vectors λ1, . . . , λN

7: set z∗i = min{ fi(x)|x ∈ P} for i ∈ {1, . . . , m}
8: for i = 1 to N
9: Bi = {i1,. . . ,iT } // where λi1 , . . . , λiT are the T closest to λi

10: end for
11: copy all the non-dominated solutions from P to A

Algorithm 2 E = CloneOperator(A)
1: PC = A
2: if (|PC|> NC)
3: CrowdingDegreeAssignment(PC)
4: PC = Sort(PC) //sort PC according to crowding distance
5: PC = SelectforClone(PC)
6: end if
7: for i=1 to |PC|
8: calculate qi according to (4)
9: clone qi individuals of ai and add them to E

10: end for
11: return E

Algorithm 3 S = Immune_Search(A)
1: E = CloneOperator(A) (Algorithm 2)
2: for i=1 to |E|
3: generate a random integer j in [1, |E|]
4: {C1, C2} = SBX(Ei, Ej)
5: generate a random integer k in [1,2]
6: Si = PM(Ck)
7: end for
8: return S

Algorithm 4 A = Archive_Update(S, A)
1: for i=1 to |S|
2: for j=1 to |A|
3: flag = CheckDominance(Si,Aj)
4: if flag == 1 // Aj is dominated by Si
5: mark Aj as a dominated solution
6: else
7: break
8: end if
9: end for

10: delete the marked dominated solutions from A
11: if flag != -1 // if any individual in A does not dominate Si
12: add Si to A
13: if |A|> N
14: CrowdingDegreeAssignment(A)
15: delete the most crowded one
16: end if
17: end if
18: end for
19: return A

introduce the immune-based evolutionary strategy, its pseudo-
code is illustrated in Algorithm 3, where SBX(Ei, Ej) means
to apply SBX on parent solutions Ei and Ej; C1 and C2 are
the resultant children solutions generated from SBX; PM(Ck)
indicates the execution of PM on Ck. Note that there is a small
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Algorithm 5 Complete Algorithm of AgMOPSO
1: Initialization (Algorithm 1)
2: while fes < max-fes
3: S = Immune_Search (A) (Algorithm 3)
4: evaluate S and set fes = fes + |S|
5: A = Archive_Update(S, A) (Algorithm 4)
6: update the reference point z∗
7: for i=1 to N
8: pbesti = Ai //Selection for pbesti
9: for j=2 to |A|

10: if g(pbesti|wi, z∗) > g(Aj|wi, z∗)
11: pbesti = Aj
12: end if
13: end for
14: select lbesti from the neighbors of sub-problem i
15: randomly select gbesti from archive A
16: calculate vi use (5)
17: calculate xi use (6)
18: evaluate the new particle xi and set fes = fes +1
19: end for
20: A = Archive_Update(P, A) (Algorithm 4)
21: update the reference point z∗
22: end while
23: Output A

Algorithm 6 A = Archive_Update_Constraint(S, A)
1: U=A

⋃
S

2: I={}, O={}
3: for each x ∈ U
4: if CV(x) > 0 // x is infeasible solution
5: I = I

⋃
x

6: else
7: O=O

⋃
x

8: end if
9: end for

10: if |O|> N
11: Archive_Update(O, A); // use O to update A (Algorithm 4)
12: else
13: for each i=1 to |O|// add the feasible solutions
14: add Oi to A
15: end for
16: sort I in descending order according to CV
17: while (|A|< N) //add the infeasible solutions
18: for each i=1 to |I|
19: find the subproblem k that is nearest to I(i)
20: if subproblem k is not marked
21: add I(i) to A
22: end if
23: mark subproblem k
24: end for
25: end while
26: end if
27: return A

probability to select two same individuals for running SBX. In
this case, the PM operator will further perturb the parent to
produce a new offspring, even though SBX does nothing. After
that, a new solution set S is generated, which will be added
into the external archive using the archive update operation as
introduced in Section III-D.

C. PSO-Based Search

In original PSO algorithm, the velocities of the particles are
usually updated using the positional information of the pbest

and gbest particles. However, the selection of pbest and gbest
is particularly difficult when using PSO to tackle MOPs, as
multiple equally optimal solutions (i.e., nondominated solu-
tions) are available. Here, a novel velocity update approach is
presented, aiming to optimize all the subproblems, as follows:

vi(t + 1) = w · vi(t) + F1 · (pbesti − xi(t))

+ F2 · (lbesti − gbesti) (5)

where xi is the current evolved particle in P, and t indicates
the iteration number; pbesti is the individual in the external
archive A that can give the best result for the subproblem i,
lbesti is the individual in the external archive A that can give
the best result for a random subproblem selected from the
neighboring set Bi (as defined in line 9 of Algorithm 1), and
gbesti is randomly selected from the external archive A.

After the update of velocity, the position of particle xi is
renewed as follows:

xi(t + 1) = xi(t) + vi(t + 1). (6)

There are three parts in our new PSO search method. First,
w · vi(t) is the “inertial” part same as other PSO search meth-
ods. The second part is F1 · (pbesti − xi(t)), which guides the
current particle to approach the best individual for the current
subproblem i. The step size F1 is set as d1 in (2), which indi-
cates the distance of pbest from the current subproblem. That
is to say, if pbest is far away from the current subproblem,
the step size is set to be large; otherwise, it is set to be small.
The last part is F2 · (lbesti − gbesti), which is the differential
vector similar to “DE/rand/1” [51]. In this way, the proposed
velocity update method in (5) not only has the search pattern
of PSO, but also inherits the effective search behaviors of DE.

D. Archive Update

After finishing the immune-based evolutionary search or the
PSO-based search, the newly found nondominated solutions
are collected into the external archive. Given the finite size of
the external archive, a proper selection mechanism is necessary
for updating it since the number of nondominated solutions
may be very large. Such selection mechanism has signifi-
cant impact on performance, as it helps to guide the search
toward the true POF. In this paper, a popular archive update
mechanism [9], [20], [52] is used. This selection mechanism
is designed based on both Pareto dominance and the crowding
degree. Assuming that, the newly generated solution set is S
and the external archive is A, the pseudo-code of the archive
updating mechanism can be briefly described in Algorithm 4.
The function CheckDominance(x, y) returns the Pareto dom-
inance relationship between solutions x and y. If the function
returns 1, it means that x dominates y. Otherwise, the function
returns −1 when y dominates or is equal to x. Another func-
tion CrowdingDegreeAssignment(A) will calculate the value
of crowding degree for each solution in A.

E. Complete Algorithm of AgMOPSO

The above sections have introduced the main compo-
nents of AgMOPSO, i.e., immune-based evolutionary strategy,
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PSO-based search, and archive update operator. Other imple-
mentation details are further clarified in the pseudo-code
of AgMOPSO, as illustrated in Algorithm 5, where fes
and max-fes, respectively, denote the count of current func-
tion evaluation and the maximum number of function
evaluation.

At first, the initialization is processed in line 1 of
AgMOPSO, as described in Algorithm 1. After that,
AgMOPSO starts the loop of evolutionary process in
lines 2–22. In the first search phase, the immune-based evo-
lutionary strategy is operated on the external archive A (in
line 3), and a children population S is produced. The pseudo-
code of this procedure was described in Algorithm 3. After
that, the objective function values of all the individuals in S
are computed in line 4, and they are coupled with the exter-
nal archive A to run Algorithm 4 for the archive update
procedure (in line 5). Then, the reference point z∗ used
in (2) is updated (in line 6). In the PSO-based search phase,
the selection of pbesti, lbesti, and gbesti from the exter-
nal archive A is performed in lines 7–15, as introduced in
Section III-C. After that, each particle xi is evolved by the
PSO-based search pattern, as illustrated in lines 16 and 17,
and its new objective functions are evaluated in line 18.
Also, the updated particle swarm P and external archive A
are used to run Algorithm 4 (line 20), and the reference
point z∗ is updated again in line 21. The above evolutionary
phase will be repeated until the predefined maximum num-
ber of function evaluation, max-fes, is reached. At the end
of this algorithm, the external archive A is reported as the
final POF.

F. Discussion

Based on the implementation of AgMOPSO described
above, this section discusses the differences between
AgMOPSO and some existing algorithms, such as
D2MOPSO [20], MMOPSO [9], and BCE–MOEA/D [12], as
they all adopt the similar idea of combining Pareto dominance
and decomposition approaches. Please note that, as described
in Section I, the novel aspects of AgMOPSO include an
immune-based evolutionary strategy to enhance the solution’s
quality in external archive and an archive-guided velocity
update approach to guide the PSO-based search. These two
search patterns are mutually co-operated in AgMOPSO to
speed up the convergence, which is the essential difference
with D2MOPSO, MMOPSO, and BCE-MOEA/D. Their detail
differences are further clarified as follows.

1) Differences Between AgMOPSO and D2MOPSO:
• In D2MOPSO, evolutionary search is not run to enhance

the archive. However, immune-based search is performed
in AgMOPSO to evolve the archive, which aims to
search the least crowded areas and results in a better
diversity and convergence in the archive as discussed in
Section III-B.

• The PSO-based search behavior in D2MOPSO is differ-
ent from that driven by (5) in Section III-C. That is to
say, the pbest and lbest in D2MOPSO are both selected
dependent on the current subproblem, which may ignore

some useful information from the local and global neigh-
bors. As discussed in Section III-C, the PSO-based search
of AgMOPSO in (5) is driven by three parts, i.e., the
inertial part, the subproblem guided part and the differ-
ential vector part. In this way, pbest, lbest, and gbest
in AgMOPSO are, respectively, selected based on the
different subproblems in the archive.

• For D2MOPSO, two archives, i.e., the leaders archive and
the external archive, are adopted. The leaders archive is
used to collect the elite particles with larger crowding
distances based on both objective and decision spaces.
However, in AgMOPSO, only the external archive is used
to keep the swarm leaders.

2) Differences Between AgMOPSO and MMOPSO:
• Although both algorithms evolve the archive, they

use different evolutionary operators. MMOPSO only
adopts a general evolutionary operator (SBX+PM), while
AgMOPSO performs an additional cloning operator. Such
operator emphasizes the search on sparse areas in objec-
tive space, as illustrated in Fig. 2.

• In MMOPSO, the velocity update formulations are com-
posed by two aspects, i.e., local search and global search,
which are controlled by a parameter δ. This search pattern
is totally different from the archive-guided PSO-based
search method in (5).

3) Differences Between AgMOPSO and BCE-MOEA/D:
• In BCE-MOEA/D, although a further search is also

launched on the archive (i.e., Pareto criteria (PC) pop-
ulation in BCE-MOEA/D [12]), it behaves differently
than the immune-inspired search in AgMOPSO. Both of
them are encouraged to search the less crowded area,
but the individuals with different crowding degrees in
BCE-MOEA/D are all assigned with the same search
strength. Whereas, in AgMOPSO, due to the use of
the proportional cloning operator, the individuals with
lower crowding degrees will be allocated with more
clones which will result in a stronger search bias in
that area.

• In AgMOPSO, the elite archive is exploited to guide the
PSO swarm for searching; whereas, in BCE-MOEA/D,
such information from the archive is not exploited at
all to guide the search behavior of the Non-PC (NPC)
population.

• The decomposition-based method (i.e., MOEA/D
algorithm [7]) in BCE-MOEA/D is used to evolve the
NPC population as replacement will be activated if
the new solution is better. However, in AgMOPSO, the
decomposition-based module is only used to select pbest,
lbest, and gbest from the archive.

IV. EXPERIMENTAL STUDIES

A. Test Problems

Comprehensive and diverse test problems were employed in
order to assess the performance of AgMOPSO. First, the ZDT
test problems were adopted. As some complicated features,
such as variable linkages and objective function modality, are
absent in the ZDT problems, they are not very challenging for
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most multiobjective algorithms. Thus, two other kinds of more
difficult MOPs, i.e., the bi-objective WFG and the UF test
problems were also used in light of their complicated features,
including convexity, concavity, discontinuity, nonuniformity,
and the existence of many local POFs. To further examine
the performance of AgMOPSO in tackling MOPs with three
objectives, the DTLZ test problems and UF8-UF10 were used
in this paper. Moreover, the DTLZ and WFG test problems
with 5 and 10 objectives were also used to further study
the scalability of AgMOPSO. For ZDT1–ZDT3 and all the
UF test problems, 30 decision variables were used; ZDT4
and ZDT6 were used with 10 decision variables; and WFG1-
WFG9 were used with 2 × (m − 1) position parameters and
20 distance parameters. For details on the ZDT, WFG, UF, and
DTLZ test problems, please refer to [53]–[56], respectively.

B. Performance Measures

The goal of MOPs is to find a uniformly distributed set
that is as close to the true POF as possible. In order to
assess the performance among different compared algorithms,
two performance measures, i.e., inverted generational dis-
tance (IGD) [57] and hyper-volume (HV) [58] were adopted
here. It is believed that these two performance indicators can
not only account for convergence, but also the distribution
of final solutions. The true POFs for computing IGD were
downloaded from http://jmetal.sourceforge.net/problems.html.
The reference point for HV calculation was set to 1.1 times
the nadir point of the true POF, i.e., 1.1 × (0.5, . . . , 0.5) for
DTLZ1, 1.1 × (1.0, . . . , 1.0) for DTLZ2–DTLZ4, 1.1 × (1.0,
. . . , 1.0, 2.0 × m) for DTLZ7, 1.1 × (1.0, . . . , 1.0, 2.0 × m)
for WFG1-WFG9 (where m is the number of objectives).

C. Experimental Settings

In the experiments, in order to validate the perfor-
mance of AgMOPSO in a convincing way, it was com-
pared to three competitive MOEAs, i.e., NSGA-II [2],
EAG-MOEA/D [59], BCE-MOEA/D [12], and two current
MOPSOs (D2MOPSO [20] and MMOPSO [9]).

To allow a fair comparison, the related parameters in all the
compared algorithms were set according to their original refer-
ences, as summarized in Table I. In Table I, N denotes the pop-
ulation size for all the algorithms; pc and pm are, respectively,
the crossover and mutation probabilities; ηc and ηm are the
distribution indexes of SBX and PM, respectively. w, c1, and
c2 are the parameters used for the velocity update equations of
MOPSO algorithms. For EAG-MOEA/D, BCE-MOEA/D, and
AgMOPSO, T defines the size of the neighborhood regarding
the weight vectors. The decomposition method in (2) is also
adopted in the original paper of D2MOPSO and MMOPSO. As
the original EAG-MOEA/D was designed for combinatorial
optimization, the evolutionary operators, and decomposition
method in AgMOPSO were applied to EAG-MOEA/D, to
make it more effective for continuous optimization and to
achieve a more fair comparison.

Please note that the settings of N listed in Table I are only
applicable for bi-objective test problems. Moreover, N is set to
105 for three-objective test problems, to 210 for five-objective

TABLE I
PARAMETERS SETTINGS OF THE COMPARED ALGORITHMS

test problems, and to 220 for ten-objective test problems. The
maximum numbers of function evaluation were set to 250 ×
N for ZDT, to 500 × N for WFG and DTLZ, and to 3000 ×
N for UF (N is the population size). In general, the size of
the external archive is set the same as N. All the experiments
were independently run 30 times. The mean values and the
standard deviations (std) on IGD and HV were collected in the
corresponding tables for performance comparison. Moreover,
in order to ascertain statistical significances, the Wilcoxon’s
rank sum test was further performed to examine the statistical
significance of the difference between the results obtained by
AgMOPSO and those obtained by the other algorithms at the
significance level α = 0.05.

D. Comparisons of AgMOPSO With Various Algorithms

1) Comparisons of AgMOPSO With NSGA-II, EAG-
MOEA/D, D2MOPSO, and MMOPSO: Please note that
all the compared algorithms use the same crowding dis-
tance method [2] to estimate their crowding status among
the solutions and adopt the same archive update method
(Algorithm 4), in order to allow a fair comparison. This
population update method [52] is an improved version of the
approach in NSGA-II to prune the nondominated solutions and
is also used in the original implementation of D2MOPSO and
MMOPSO.

Table II lists the mean and standard deviation (std) results
of all the algorithms on the 31 test problems in terms of
IGD. The best result obtained for each test problem was
marked with boldface. As observed from Table II, AgMOPSO
performs the best and presents a clear advantage over the
other four algorithms on the majority of the test instances.
More specifically, AgMOPSO obtains the best IGD results
on 17 out of 31 test instances. The proportions of the test
instances on which AgMOPSO performs better than NSGA-II,
EAG-MOEA/D, D2MOPSO, and MMOPSO are 22/31, 22/31,
26/31, and 22/31, respectively. Conversely, the proportions
on which AgMOPSO is defeated by the peer algorithms are
5/31, 5/31, 3/31, and 2/31, respectively, for NSGA-II, EAG-
MOEA/D, D2MOPSO, and MMOPSO. Especially, D2MOPSO
shows poor performance on the test MOPs with many local
POFs, such as ZDT4, DTLZ1, and DTLZ3. This is mainly
because D2MOPSO only performs the PSO search method,
which may easily fall into local optima. MMOPSO and
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AgMOPSO can overcome this shortcoming by further evolving
the archive using other search patterns, and AgMOPSO per-
forms even better with the use of immune-based evolutionary
strategy. For DTLZ5 and DTLZ6 which have a degener-
ated curve, EAG-MOEA/D, MMOPSO, and AgMOPSO show
a similar performance and are able to find good approxima-
tions of true POF as their corresponding mean values of IGD
are under an accuracy level of 10−3.

The HV results of all the 31 test problems are pro-
vided in Table S-I of the supplementary material. Similar
observations from the IGD results can be found in the
HV results. AgMOPSO also performs best on most of test
instances, such as ZDT1-ZDT4, ZDT6, WFG1-WFG5, WFG7,
UF1-UF3, UF8, DTLZ1, DTLZ2, DTLZ4, and DTLZ7. As
indicated in the last row of Table S-I, in the supplementary
material, the proportions on which AgMOPSO performs better
than or similarly to NSGA-II, EAG-MOEA/D, D2MOPSO,
and MMOPSO, are 27/31, 26/31, 29/31, and 29/31,
respectively.

Based on these IGD and HV comparison results, it is suffi-
cient to conclude that AgMOPSO shows a better performance
than NSGA-II, EAG-MOEA/D, D2MOPSO, and MMOPSO
on solving these test instances.

2) Comparison of AgMOPSO With BCE-MOEA/D: As
BCE-MOEA/D also combines Pareto dominance and decom-
position approach to keep the archive and the NPC population,
it is also compared to AgMOPSO for solving differ-
ent test MOPs with various objectives. The main differ-
ences of AgMOPSO and BCE-MOEA/D were clarified in
Section III-F. As studied in [60], the performance of the com-
pared algorithms will be significantly different when different
density estimators are used. For this consideration, we use the
same density estimator with BCE-MOEA/D in order to have
a fair comparison, and this variant is called AgMOPSO-niche.

Table III presents their performance comparisons in terms of
HV, when tackling ZDT, WFG, UF, and DTLZ test problems
with different numbers of objectives. The best mean result
of each problem was highlighted in boldface. As observed
from Table III, AgMOPSO-niche obtains a better perfor-
mance in 47 out of 63 test instances. According to the
Wilcoxon’s rank sum test, AgMOPSO-niche performs simi-
larly to BCE-MOEA/D on 10 test instances. For the simple
ZDT and the more complicated WFG test problems with
two objectives, AgMOPSO-niche is found to have a sig-
nificantly better performance, which is mainly brought by
the use of immune-inspired evolutionary strategy, as this
approach is more effective on simple MOPs without variable
dependence [25]. Regarding UF1–UF7 with complicated POS,
AgMOPSO-niche also shows a superior performance as it per-
forms better than BCE-MOEA/D on UF1–UF3, UF7 and simi-
larly to BCE-MOEA/D on UF4-UF6. This is mainly due to the
use of archive-guided PSO search approach, in which each par-
ticle is used to optimize one particular subproblem as guided
by the elitist individuals from the external archive. About the
test MOPs with more than three objectives, AgMOPSO also
performs better on most cases, while BCE-MOEA/D is only
better on UF9 and DTLZ1 with three objectives, on DTLZ2
and WFG5 with five objectives, and on DTLZ3, WFG2,

(a) (b)

Fig. 3. Two variants of AgMOPSO. (a) AgMOPSO-I. (b) AgMOPSO-II.

WFG4, WFG5, and WFG8 with ten objectives. In summary,
as observed from the last row of Table IV, AgMOPSO per-
forms better or similarly to BCE-MOEA/D on 53 out of 63 test
instances. Conversely, AgMOPSO-niche is only defeated by
BCE-MOEA/D on ten test instances. From the above discus-
sion, it is reasonable to conclude that AgMOPSO also shows
a superior performance over BCE-MOEA/D on tackling most
of test instances adopted.

E. Effectiveness of the Proposed Approaches

There are two search modules used in AgMOPSO, such
as immune-based evolutionary search and PSO-based search.
In order to study their effectiveness, AgMOPSO was further
compared to two variants of AgMOPSO, i.e., AgMOPSO-I and
AgMOPSO-II. AgMOPSO-I only runs the PSO-based search
on the particle swarm as shown in Fig. 3(a), while AgMOPSO-
II only uses the immune-based evolutionary search on the
external archive as shown in Fig. 3(b).

The IGD comparison results of AgMOPSO-I, AgMOPSO-
II, and AgMOPSO on all the 31 test problems are listed
in Table IV. As observed from Table IV, AgMOPSO per-
forms best on 21 out of 31 test problems regarding IGD when
compared to AgMOPSO-I and AgMOPSO-II. The Wilcoxon’s
rank sum test results also reveal that AgMOPSO obtains better
IGD results than AgMOPSO-I and AgMOPSO-II on 30 and
21 test problems, respectively. Moreover, AgMOPSO performs
similarly to AgMOPSO-I on 1 test problem and to AgMOPSO-
II on seven test problems. In other words, AgMOPSO performs
better than or similarly to AgMOPSO-I and AgMOPSO-II on
31 and 28 out of 31 test problems regarding IGD. These exper-
imental results clearly justify the usefulness of the evolution
on the external archive as well as the effectiveness of the
archive-guided PSO search in AgMOPSO.

As observed from Table IV, the performance of AgMOPSO-
I seems very poor when compared to AgMOPSO. This is
mainly because the proposed PSO-based search has to be
driven by the elite individuals from external archive. When
the archive cannot provide the guiding particles with good
diversity and good convergence, the performance of PSO-
based search in (5) will not work well. AgMOPSO-I may
search for some undesirable subproblems, as the archive did
not provide good leader information for the particle swarm.
Especially for the problems with many local POFs, such as
ZDT4, DTLZ1, DTLZ3, AgMOPSO-I is unable to jump out
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TABLE II
PERFORMANCE COMPARISONS OF IGD VALUES

from the local optimal only using PSO-based search, and this
leads to a pretty poor performance on these test problems. Due
to the use of immune-based evolutionary search, AgMOPSO-
II focuses on the sparse area, which helps to keep the archive
with good properties of convergence and diversity. From the
above discussion, it is concluded that the two search modules
compensate each other and get better performance when they
are evolved cooperatively. Actually, the immune-based evolu-
tionary search is a general evolutionary module that can also
enhance the performance of other multiobjective metaheuristic
algorithms, as supported by the experiments in Section II of
the supplementary material.

F. Comparison of Running Times

In order to evaluate the computational efficiency of the
compared algorithms, the actual running time (in s) on the
WFG1–WFG9 test problems was recorded in Fig. 4. Please
note that all the compared algorithms were implemented in
Sun JAVA using a personal computer with an i7-6700 CPU
running at 3.40GHz (processor) and 20.0 GB in RAM. Clearly,
D2MOPSO consumes significantly more time than the other
competitors, as its leaders archive is updated based on the
crowding distances on both decision and objective spaces.
Therefore, the running time of D2MOPSO is greatly length-
ened as the number of variables in the WFG test problems is

Fig. 4. Running times of all the compared algorithms on WFG test problems.

24, which is significantly larger than the number of objectives.
For NSGA-II, EAG-MOEA/D, MMOPSO, and AgMOPSO,
they show similar running times, as they all adopt the same
archive updated method, which is the main factor affecting the
running time.

G. More Discussions About AgMOPSO

Due to page limitations, further discussions were pro-
vided in the supplementary material of this paper, in order
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TABLE III
PERFORMANCE COMPARISONS OF AGMOPSO AND BCE-MOEA/D

to further study the performance of AgMOPSO on many-
objective optimization problems, the effectiveness of the
immune-based evolutionary search and the cloning operator,

TABLE IV
PERFORMANCE COMPARISONS OF AGMOPSO AND TWO VARIANTS

and the parameter sensitivity analysis of AgMOPSO on T, w,
and F.

V. HANDLING CONSTRAINTS

After demonstrating the superiority of AgMOPSO for solv-
ing unconstrained MOPs (i.e., only with box constraints on
decision variables), this section extends AgMOPSO (denoted
as C-AgMOPSO) to solve constrained MOPs.

In case of the presence of infeasible solutions, some mod-
ifications are suggested to the archive update procedure of
AgMOPSO, which is aimed to give more emphasis on fea-
sible solutions. The other components of AgMOPSO keep
untouched, as introduced in Algorithm 5. An individual with
a lower constraint violation value is considered first and the
population diversity should be maintained at the same time.

A. Modifications on the Archive Update Procedure

As suggested in [61], the constraint violation value of
a solution x, denoted as CV(x), is calculated by the following
form:

CV(x) =
J∑

j=1

〈
gj(x)

〉 +
K∑

k=1

〈hk(x)〉 (7)

where the bracket operator 〈α〉 returns the absolute value of α

if α < 0, and returns 0 otherwise. It is obvious that a smaller
value of CV(x) indicates the better quality of x, and a feasible
solution x always has a CV(x) value as 0.
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TABLE V
COMPARISON RESULTS ON CONSTRAINED TEST PROBLEMS

The pseudo-code of this modified archive update procedure
is given in Algorithm 6. At first, the archive A and the off-
spring population S are combined (in line 1). Then, the feasible
and infeasible solutions in the union population are identified
(in lines 3–9). If the number of feasible solutions is larger
than N, the update procedure is the same as Algorithm 4 (in
line 11). Otherwise, the feasible solutions are added to the
archive first (in lines 13–15) and then the infeasible solutions
are sorted in descending order according to the CV values
using (7). The corresponding subproblem k nearest to the indi-
vidual with the lowest CV value is found. If this subproblem
k is not marked, this solution is added to the archive and
the subproblem k is also marked. This procedure will go on
until the archive size reaches N (in lines 17–25). Please note
that when evaluating the quality of infeasible solutions, its
constraint violation value and the population diversity in the
archive are simultaneously considered in Algorithm 6.

B. Experiments

In order to validate the performance of C-AgMOPSO
in solving constrained MOPs, C-AgMOPSO was further
compared to C-MOEA/DD [11] on tackling 14 benchmark
constrained MOPs, including ten CF problems proposed
in the CEC 2009 test suite [55] and four constrained test
instances in [61] (C1-DTLZ1, C2-DTLZ2, C3-DTLZ1, and
C3-DTLZ4). The population size was set to 100 for the bi-
objective test problems and to 105 for the three-objective ones.
The maximum numbers of generation were set to 3000 for
the CF problems and to 500 for the constrained DTLZ prob-
lems. The reference points for HV are set to 1.1 times the
nadir points of the true POFs, i.e., 1.1 × (0.5, . . . , 0.5) for
C1_DTLZ1, 1.1 × (1.0, . . . , 1.0) for CF1-CF10, C2_DTLZ2,
C3_DTLZ1, and 1.1 × (2.0, . . . , 2.0) for C3-DTLZ4.
Other parameters settings were set the same as introduced in
Section IV-C.

1) Comparison of C-AgMOPSO and C-MOEA/DD:
Table V shows the HV results obtained from 30 independent
runs on 14 test instances. The better results were marked with
boldface. These statistical results were obtained based on fea-
sible nondominated solutions that dominate the reference point
for each problem. As observed from Table V, C-AgMOPSO

Fig. 5. Final results of C-AgMOPSO on the car-side impact problem.

significantly outperforms C-MOEA/DD on two-objective con-
strained test instances (CF1–CF7). Moreover, for the three-
objective constrained test instances, C-MOEA/DD performs
better only on CF10 and C3-DTLZ4, while C-AgMOPSO
performs better on CF8, CF9, C1-DTLZ1, and C2-DTLZ2.
For C3-DTLZ1, C-AgMOPSO, and C-MOEA/DD show sta-
tistically similar performance. From the last row in Table V,
C-AgMOPSO performs better than C-MOEA/DD on 10 out of
14 test instances. Therefore, it is concluded that C-AgMOPSO
presents some advantages over C-MOEA/DD in solving these
constrained test problems.

To visually show the performance, the best final solu-
tion sets obtained by C-MOEA/DD and C-AgMOPSO on
CF1–CF6, and C1-DTLZ1, C2-DTLZ2, C3-DTLZ1, and C3-
DTLZ4 were plotted in Fig. S-1 of the supplementary material.

2) Further Study on Tackling Real World Problem:
Here, a real world engineering problem (car side-impact
problem [61]) was also included to validate the performance of
AgMOPSO. This problem has three objectives and ten con-
straints, which aims at minimizing the weight of a car and
simultaneously minimizing the public force experienced by
a passenger and the average velocity of the V-Pillar respon-
sibility for withstanding the impact load. More details about
this problem can be found in [61].

For this problem, the population size N was set to 210
and the maximum number of generation was set to 2000. All
other experimental configurations were set the same as intro-
duced in Section III-C. Fig. 5 illustrates the final solutions
obtained by C-AgMOPSO, where the generated approximated
POF using the classical generative procedure (i.e., the fmin-
con function in MATLAB) is marked with small circles while
the approximated POF obtained by C-AgMOPSO is identified
with bigger circles. Apparently, as observed from Fig. 5, all the
points found by C-AgMOPSO are uniformly distributed over
the entire surface formed by the classical generative proce-
dure. To investigate the closeness of our found solutions with
that obtained by the classical generative procedure, the con-
vergence metric (i.e., the average distance from our points to
that found by the classical generative procedure) is computed
and its value is 3.59 ×10−3. This value is very small and it
clearly indicates that the solutions obtained by C-AgMOPSO
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can closely approach the approximated POF of this problem.
Moreover, the spread of solutions is also demonstrated visually
in Fig. 5.

VI. CONCLUSION

In this paper, a novel MOPSO algorithm with an archive-
guided velocity update method was presented, which is based
on a decomposition approach to transform MOPs into a set
of aggregated subproblems. The pbest, lbest, and gbest par-
ticles are all properly selected from the external archive.
Additionally, an immune-based evolutionary strategy is fur-
ther applied on some individuals that are selected from the
external archive for being located in sparse areas of the search
space. The evolution on the external archive was verified to
promote the convergence speed and keep the diversity, which
can help to guide the swarm to do the PSO-based search.
In this way, the performance of AgMOPSO was enhanced
to enable it tackle various types of MOPs. The effective-
ness of the proposed immune-based search and archive-guided
PSO search approaches was also justified by experimental
results. When compared to three state-of-the-art MOEAs and
two competitive MOPSOs, our experimental results confirmed
that AgMOPSO showed a competitive performance in solving
most of the test problems adopted. Moreover, the extensions of
AgMOPSO to solve constrained optimization problems, many-
objective optimization problems, and a real world engineering
problem were also conducted in this paper to show its potential
in tackling different types of optimization problems.

As part of our future work, the performance of AgMOPSO
in tackling many-objective optimization problems will be fur-
ther studied and the applications of AgMOPSO for more
practical problems will also be studied.
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